Information theoretic parameters of noncommutative graphs and convex corners

نویسندگان

چکیده

We establish a second anti-blocker theorem for noncommutative convex corners, show that the anti-blocking operation is continuous on bounded sets of and define optimization parameters given corner generalize well-known graph theoretic quantities. entropy state with respect to corner, characterize its maximum value in terms generalized fractional chromatic number splitting results demonstrate entropic complementarity between anti-blocker. identify two extremal tensor products corners examine behavior introduced tensoring. Specializing graphs, we obtain quantum versions clique covering number, as well notion state, which be graph. Witsenhausen rate compute values our some specific cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Convex Corners Scatter

We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than π. This extends the earlier result of Bl̊asten, Päivärinta and Sylvester who considered rectangular corners. In three dimensions, we prove a similar result for any potential with a circular conic corner whose opening angle is outside a countable subset of (0, π).

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Information Theoretic Prototype Selection for Unattributed Graphs

In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be use...

متن کامل

Polygon Simplification by Minimizing Convex Corners

Let P be a polygon with r > 0 reflex vertices and possibly with holes. A subsuming polygon of P is a polygon P ′ such that P ⊆ P ′, each connected component R′ of P ′ subsumes a distinct component R of P , i.e., R ⊆ R′, and the reflex corners ofR coincide with the reflex corners ofR′. A subsuming chain of P ′ is a minimal path on the boundary of P ′ whose two end edges coincide with two edges o...

متن کامل

Information-theoretic lower bounds for convex optimization with erroneous oracles

We consider the problem of optimizing convex and concave functions with access to an erroneous zeroth-order oracle. In particular, for a given function x → f(x) we consider optimization when one is given access to absolute error oracles that return values in [f(x) − , f(x) + ] or relative error oracles that return value in [(1− )f(x), (1 + )f(x)], for some > 0. We show stark information theoret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2022

ISSN: ['1945-6581', '0019-2082']

DOI: https://doi.org/10.1215/00192082-9799163